Journal of Organometallic Chemistry, 170 (1979) 385-397
© Elsevier Sequoia S.A., Lausanne - Printed in The Netherlands

CRYSTAL AND MOLECULAR STRUCTURE, AND ${ }^{3 I_{P}} \mathrm{~N}_{\mathrm{P}} \mathrm{M} . \mathrm{R}$. CHARACTERISTICS OF DI- - CHLORODI (PROPIONYL) BIS (DIMETHYLPHENYLPHOSPHINE) DIPLATINUM (II) . TRANS-INFLUENCE OF LIGANDS IN BINUCLEAR COMPLEXES

GORDON K. ANDERSON, RONALD J. CROSS, IJJUBICA MANOJLOVIC-MUIR, KENNETH W. MUIR, and TIHOMIR SOLOMUN

Department of Chemistry, University of Glasgow, Glasgow Gl2 80Q (Great Britain)
(Received February 5th, 1979)

Summary
The ${ }^{31} p$ n.m.r. spectra of the cis and trans isomers of $\left.{ }^{\left[P t_{2}(\mu-C l)\right.} 2(\mathrm{COEt})_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right]$ reveal $\mathrm{l}_{\mathrm{J}}(\mathrm{Pt}-\mathrm{P})$ coupling constants of ca 5400 Hz . The crystal structure of the trans isomer has been determined by X-ray diffraction methods. The Pt-P and Pt-C bond lengths are $2.209(1)$ and $1.972(5) \AA$. The $\mu-P t-C I$ distances, 2.498(I) $\stackrel{\circ}{\AA}$ trans to COEt and $2.393(1) \stackrel{\circ}{A}$ trans to $\mathrm{PMe}_{2} \mathrm{Ph}$, suggest that, relative to phosphine, o-carbon donor ligands exert a greater trans-influence in binuclear complexes than they do in mononuclear platinum(II) derivatives.

Introduction

Unusually large $l_{J(P t-P)}$ coupling constants in halogenbridged binuclear complexes of platinum(II) have recently been
reported by several authors $[1-3]$. In view of the proposed correlation between $P t-P$ coupling constants and bond lengths [4] we have undertaken an investigation of the $31_{p} n . m . r$. spectrum and solid state structure of trans- $\left[\mathrm{Pt} \mathrm{t}_{2}(\mu-\mathrm{Cl})_{2}(\mathrm{COEt})_{2}\left(\mathrm{PME} \mathrm{Ph}_{2} \mathrm{Ph}^{\mathrm{P}}\right.\right.$, for which ${ }^{1} J(P t-P)$ is exceptionally large, even in relation to other halogen-bridged platinum(II) complexes. The results of this work are also pertinent to any consideration of the cis- and transinfluence of ligands in such systems. Up till now the extensive discussion of these topics in platinum chemistry has focussed on mononuclear species [5-7]; the extent to which this discussion is directly applicable to binuclear complexes merits consideration.

Results and Discussion

The title compound was prepared smoothly and in high yield from the reaction between cis-[PtCl $\left.{ }_{2}(C O)\left(P M e_{2} P h\right)\right]$ and $E t_{2} H g$ [8]. The colourless crystals are stable to air and moisture, and dissolve readily in most organic solvents. The ${ }^{31} p \mathrm{n} . \mathrm{m} . \mathrm{r}_{\mathrm{p}}$. spectra of the solutions reveal the presence of cis and trans isomers. The ratio of the concentrations of the two isomers is dependent on the solvent, changing from $1: 3$ in $C D C l_{3}$ and $C D_{2} C l_{2}$ to $1: 7$ in $\mathrm{C}_{7} \mathrm{D}_{8}$. Since the major isomer is favoured by the less polar solvent, we tentatively assign it a trans configuration [l]. Recrystallisation from methylene chloride/ether produces crystals of the trans complex.

There now appears to be considerable evidence that complexes of the type $\left[\mathrm{Pt}_{2} \mathrm{I}_{2}(\mu-\mathrm{X})_{2} Y_{2}\right] \quad(\mathrm{I}=$ tertiary phosphine, $\mathrm{X}=$ halogen, and $Y=$ halogen, alkyl, aryl, acyl, or aroyl) exist in solution as mixtures of cis and trans isomers [1, 2, 8b,9]. In general, trans isomers predominate for the tetrahalide complexes whereas cis isomers are more common when $Y=a l k y l$ or aryl. Thus, in the case of the methyl complex $\left[\mathrm{Pt}_{2}(\mu-\mathrm{Cl})_{2} \mathrm{Me}_{2}\left(\mathrm{PMe}_{2} \mathrm{Fh}\right)_{2}\right]$ only the cis isomer was observed [IO]. Interconversion between the two
TABLE 1

[^0]isomers occurs readily in solution for most, and possibly for all, of these bridged complexes. Thus, the ratios of cis to trans isomers adjust rapidly in different solvents, and usually only one isomer is obtained on crystallisation. The intermolecular scrambling of mixed compounds of this type is also rapid [3,1l]. Moreover, broadening of some of the room-temperature n.m.r. signals of $\left[\mathrm{Pt}_{2}\left(\mathrm{H}^{(\mu-\mathrm{Cl})_{2}(\mathrm{COEt})}{ }_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right]\right.$, and also of related compounds [9], suggests that the isomerisation processes are still rapid on the n.m.r. time scale.

${ }^{31}$ P N.M.R. Spectra

Chemical shifts and coupling constants for cis- and trans-$\left[\mathrm{Pt}_{2}(\mu-\mathrm{Cl})_{2}(\mathrm{COEt})_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right]$ are presented in Table 1. Additionally, the ${ }^{2} J(P t-P t)$ coupling constant at $-70^{\circ} \mathrm{C}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ was identified for the more abundant trans-isomer ait $\pm 152 \mathrm{~Hz}$. The most remarkable features of the spectra are the ${ }^{1} J$ ($\mathrm{Pt}-\mathrm{P}$) coupling constants which are ca 5400 Hz in both the cis and trans isomers. The values show some solvent dependence, but in the same solvent the cis compound displays a coupling ll5-135 Hz greater than the trans form.

The ${ }^{l_{J}(P t-P)}$ couplings found here are at the upper end of the range typical of halogen-bridged binuclear species containing tertiary organophosphines (ca $3900-5500 \mathrm{~Hz}$) [2-3], and are nearly double those found in mononuclear cis-dichloroplatinum(II) -phosphine complexes [e.g. $2754-3720 \mathrm{~Hz}$ for ${ }^{l_{J}(P t-P E t} 3$) in cis$\left[\mathrm{PtCl}_{2}\left(\mathrm{PEt}_{3}\right) \mathrm{L}\right]$ complexes, $L=C I$, phosphine, phosphite, and various carbon-donor ligands [12]]. The values do not depend on the halogen bridges only, since those for tetrahalides are considerably lower than the corresponding coupling constants for their dichlorobis (organo)-counterparts. For example, for trans- $\left[\mathrm{Pt}_{2} \mathrm{Cl}_{4}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right]^{\mathrm{l}} \mathrm{J}(\mathrm{Pt}-\mathrm{P})$ is 3931 Hz [3]. It has been suggested that the high trans-influence of terminal organic
groups could cause bridge weakening and thus affect the values of ${ }^{1} J(P t-P)$ [2]. Alternatively, these variations may reflect the differing cis-influence of terminal organo and chloro ligands. This view is consistent with the near equality of the ${ }^{1} J(P t-P)$ coupling constants for cis and trans isomers in table 1. Moreover, it has been observed that in mononuclear complexes changes in the nature of one of the ligands cis to phosphine may lead to variations in ${ }^{1} \mathrm{~J}(\mathrm{Pt}-\mathrm{P})$ of ca looo Hz [12].

Crystal and Molecular Structure of trans-[Pt ${ }_{2} \underline{\mu}^{\mu-C l)} 2 \underline{(C O E t)}_{2}-$ $\underline{(P M e}_{2}{\underline{\mathrm{Ph}})_{2}}^{]}$

The crystals are built from discrete binuclear molecules separated by normal van der Waals contacts. Selected bond lengths and angles are presented in Table 2 and a view of the molecule is shown in the Figure.

Figure A view of the molecular structure showing the atomic numbering scheme. Hydrogen atoms are omitted and the thermal ellipsoids display 50% probability. The small circle represents a crystallographic centre of symmetry.

TABLE 2

SELECTED INTERATOMIC DISTANCES AND ANGLES

Bond Lengths (\AA)

Pt-Cl	$2.498(1)$	$C(1)-C(2)$	$1.526(7)$
Pt-Cl	$2.393(1)$	$C(2)-C(3)$	$1.501(10)$
$P t-P$	$2.209(1)$	$C(6)-C(7)$	$1.389(8)$
Pt-C (1)	$1.972(5)$	$C(6)-C(11)$	$1.375(8)$
$P-C(4)$	$1.799(6)$	$C(7)-C(8)$	$1.398(10)$
$P-C(5)$	$1.800(6)$	$C(8)-C(9)$	$1.351(12)$
$P-C(6)$	$1.818(5)$	$C(9)-C(10)$	$1.379(11)$
$O-C(1)$	$1.208(7)$	$C(10)-C(11)$	$1.383(8)$

Bond angles (${ }^{\circ}$)

Cl-Pt-Cl ${ }^{\prime}$	83.7(1)	Pt-C (1)-O	123.2 (4)
Cl-Pt-P	97.4(1)	Pt-C (1)-C (2)	115.3(4)
Cl-Pt-C(1)	174.9(1)	O-C (1)-C(2)	121.3(5)
cl'-Pt-P	178.8(1)	C(1)-C(2)-C(3)	113.8(5)
CI'-Pt-C (1)	91.2(1)	P-C (6)-C (7)	116.7(4)
P-Pt-C (1)	87.6 (1)	P-C (6)-C(11)	123.1(4)
Pt-CI-Pt'	96.3(1)	C (7)-C (6)-C (11)	$120.2(5)$
Pt-P-C(4)	113.6 (2)	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	$118.0(6)$
Pt-F-C (5)	113.9 (3)	$C(7)-C(8)-C(9)$	122.7 (7)
Pt-P-C(6)	112.3(2)	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	118.1 (6)
$\mathrm{C}(4)-\mathrm{P}-\mathrm{C}(5)$	104.3(3)	C (9) - C (10) -C (II)	121.4(7)
$\mathrm{C}(4)-\mathrm{P}-\mathrm{C}(6)$	106.9(3)	C (10)-C(11)-C (6)	119.6(6)

Each molecule is constrained to exact C_{i} symmetry. This implies that the $\mathrm{Pt}_{2} \mathrm{Cl}_{2}$ bridging unit is exactly planar. Each metal atom has a slightly distorted square-planar coordination, with the two planes sharing a common edge so that the two platinum and six ligand-donor atoms all lie within o.ol $3 \AA$ of their common plane. Bond lengths and angles within the $\mathrm{PMe}_{2} \mathrm{Ph}$ ligand are unexceptional. The conformation adopted by this ligand is such that methyl carbon $C(5)$ lies close to the metal co-ordination plane, and the phenyl ring plane passes near $C(4)$, as shown by respective $C 1-P t-P-C(5)$ and $C(4)-P-C(6)-$ C(11) torsion angles of $-9.6(3)$ and $5.2(5)^{\circ}$. Bond lengths and valency angles within the propionyl ligand are also normal. The P-Pt-C(1)-O and Pt-C(1)-C(2)-C(3) torsion angles are 72.7(4) and 161.1(5) ${ }^{\circ}$. This conformation leads to a somewhat short intramolecular Pt....H contact, involving a hydrogen atom attached to $C(2)$, of $2.8 \stackrel{\circ}{\mathrm{~A}}$.

The metal-ligand bond lengths display two points of interest. First, despite the large ${ }^{1} J(P t-P)$ coupling constant. the $P t-p$ distance [2.209(l)Å] is only slightly shorter than the run of comparable Pt-P (trans to Cl) bond lengths [2.21-2.28A] in mononuclear complexes containing alkyl- or aryl- substituted tertiary phosphines [12.13]. Indeed, it is equal, to within experimental error, to the shortest such value: $2.215(4) \stackrel{\circ}{A}$ in the anion $\left[\mathrm{PtCl}_{3}\left(\mathrm{PEt}_{3}\right)\right]^{-}$. However, this anion displays a $l_{J\left(P t-P E t_{3}\right)}$ coupling constant of 3704 Hz [14], some 30% smaller than that for trans $-\left[\mathrm{Pt}_{2}(\mu-\mathrm{Cl})_{2}(\mathrm{COEt})_{2}\left(\mathrm{PM} \mathrm{E}_{2} \mathrm{Ph}\right)_{2}\right]$. These results suggest that the proposed correlation between $P t-P$ coupling constants and bond lengths [4] breaks down if the complexes compared differ too greatly. Second, the Pt-(u-Cl) distances [2.393(2) and 2.498(1)A ${ }^{\circ}$] differ substantially and are consistent with o-propionyl exerting a much greater trans-influence than phosphine on the bridge bonds. This result is surprising, since
TABLE 3
BOND LENGTHS (A) in trans- $\left[\mathrm{Pt}_{2} \mathrm{X}_{2}(1-\mathrm{Cl})_{2} \mathrm{Y}_{2}\right]$ COMPLEXES

Pt-cl distances in mononuclear complexes, $2.36-2.39 \AA^{\circ}$ trans to tertiary phosphine and $2.40-2.42 \AA$ trans to σ-carbon donors [6], suggest that the trans-influence of phosphines is only slightly less than that of σ-carbon donor ligands.

The generality of these conclusions is confirmed by a survey of bond lengths in trans- $\left[P t_{2} X_{2}(\mu-C I)_{2} y_{2}\right]$ molecules (Table 3) [15-23]. In these molecules each bridging chlorine atom participates in two Pt-Cl bonds which are trans to different terminal ligands. The data in Table' 3 do not inaicate any significant relationship between the lengths of the two Pt-($\mu-\mathrm{Cl})$ bonds formed by a given chlorine atom. Instead, each Pt-($\mu-C l$) distance appears to reflect the influence of the transterminal ligand, according to the series $C l<\pi-C=C<A s M e_{3} \leq P R_{3}<\sigma-C$. Apart from the previously noted disparity between the relative magnitude of the trans-influence of $P R_{3}$ and $\sigma-C$, this series is identical with that derived from mononuclear complexes [5-7]. The terminai platinum-iigand bonds in Table 3,including those to tertiary phosphine, are on average ca $0.03 \AA$ shorter than corresponding bonds trans to chlorine in mononuclear complexes, while the $P t-(\mu-C l)$ bonds are typically ca $0.03 \AA$ longer than $P t-C l$ bonds in mononuclear complexes trans to similar ligands. These features seem compatible with current views of trans-influence [5-7].

Experimental

The experimental and computational procedures used in the analysis were all of standard type and have already been described in detail [24].

Crystal Data $\quad \mathrm{C}_{22} \mathrm{H}_{32} \mathrm{Cl}_{2} \mathrm{O}_{2} \mathrm{P}_{2} \mathrm{Pt}_{2}$, M.W. $=851.5$. Triclinic, space group $\underline{\underline{l}}, \underline{a}=7.839(1), \underline{b}=8.531(1), \underline{c}=11.892(1) \AA, \alpha=73.88(1)$. $\beta=73.19(1), \gamma=65.05(1)^{\circ}, \underline{U}=679.06 A^{\circ}, \underline{Z}=1, \underline{D}_{C}=2.082 \mathrm{~g} \mathrm{~cm}^{-3}$, $\underline{F}(000)=400 . \quad$ Molecular symmetry $\bar{I}-\underline{C}_{i} \cdot M O-\underline{K}_{\alpha}$ radiation,
$\lambda=0.71069 \AA \AA^{\circ}, \mu\left(\mathrm{MO}_{\mathrm{K}}\right)=107.2 \mathrm{~cm}^{-1}$.

TABLE 4
(a) FRACTIONAL COORDINATES ($\times 10^{4}$)

Atom	\underline{x}	\underline{y}	z
Pt	$544.5(2)$	$-1607.2(2)$	$1349.2(1)$
C1	$1561(2)$	$800(2)$	$-1(1)$
P	$2468(2)$	$-2397(2)$	$2613(1)$
0	$-1465(7)$	$-3321(6)$	$3303(4)$
$C(1)$	$-431(7)$	$-3446(6)$	$2330(4)$
$C(2)$	$73(10)$	$-4998(8)$	$1735(6)$
$C(3)$	$-103(14)$	$-6608(9)$	$2598(8)$
$C(4)$	$1231(10)$	$-1829(8)$	$4060(5)$
$C(5)$	$4232(10)$	$-1395(9)$	$2131(7)$
$C(6)$	$3846(7)$	$-4749(6)$	$2852(5)$
$C(7)$	$4995(10)$	$-5464(9)$	$1847(6)$
$C(8)$	$6027(10)$	$-7277(10)$	$1999(8)$
$C(9)$	$5946(11)$	$-8345(8)$	$3074(8)$
$C(10)$	$4777(11)$	$-7604(8)$	$4055(7)$
$C(11)$	$3738(9)$	$-5815(7)$	$3953(5)$

Measurements The unit cell dimensions and the integrated intensities of all independent reflexions with $\theta\left(\right.$ Mo- $\left.\underline{K}_{\Omega}\right) \leq 30^{\circ}$ were measured on an Enraf-Nonius CAD-4F diffractometer. The analysis was carried out with 3194 structure amplitndes which had been corrected for Lorentz, polarisation, and absorption effects. Transmission factors (on F^{2}) were 0.17 - 0.60.

(b) ANISOTROPIC TEMPERATURE FACTORS

	$\mathrm{U}_{11}{ }^{\text {a }}$	\underline{U}_{22}	\underline{U}_{33}	U_{12}	\underline{U}_{13}	\underline{U}_{23}
P t	35.0 (I)	36.2(1)	32.0 (1)	-10.5(1)	-4.0(1)	-2.1(1)
Cl	55.0(6)	57.6(7)	46.4 (6)	-29.8(6)	-18.8(5)	10.4 (5)
P	42.4(6)	$39.9(5)$	39.5 (6)	$-10.7(5)$	-9.7(5)	-4.8(5)
0	76 (3)	78 (3)	46(2)	-41(2)	8(2)	-10(2)
C(1)	44(2)	47(2)	40 (2)	-17(2)	-8(2)	I (2)
C(2)	81(4)	58(3)	52 (3)	-34(3)	-8(3)	-9(2)
C (3)	135 (7)	60(4)	95 (6)	-49(4)	-35(5)	2(4)
C (4)	75 (4)	63 (3)	45 (3)	-13(3)	-9(3)	-.22(2)
C (5)	67 (4)	66 (4)	91(5)	-35 (3)	$-32(3)=$	4(3)
C (6)	45 (2)	$38(2)$	45 (2)	-6(2)	-13(2)	-5 (2)
C(7)	67 (4)	66 (4)	55 (3)	O(3)	-8(3)	-15 (3)
C (8)	69 (4)	72 (4)	96 (6)	11 (3)	-9(4)	-44(4)
C (9)	71 (4)	42(3)	107(6)	-3(3)	-30(4)	-15(3)
C(10)	84(4)	46(3)	$89(5)$	-23(3)	-30(4)	11(3)
C(11)	65 (3)	49(3)	54 (3)	-18(2)	-9(3)	-2(2)

a The form used was $\exp \left(-2 \pi^{2} \times 10^{-3} \sum_{i=1}^{3} \sum_{j=1}^{3} \underline{U}_{i j} \underline{h}_{i} \underline{h}_{j} \underline{a}_{i}^{*} \underline{a}_{j}^{*}\right)$.

Structure Analysis. The positions of all atoms, including hydrogen, were determined by Patterson and difference Fourier methods. Full-matrix least squares adjustment of 136 scale, positional, and thermal parameters (Table 4) converged with $\underline{R}=0.026$ and ${\underset{W}{W}}^{R}=0.033$. Hydrogen atoms were included in these calculations but their parameters were not refined. A final
difference synthesis displayed regions of $\pm 1.6 e^{\circ} \AA^{-3}$ close to the platinum atom; eisewhere function values were within $\pm 0.8 e^{\circ}{ }^{-3}$. Mean values of $w \Delta^{2}\left(w=\sigma^{-2}\left(F_{0}\right), q=0.04\right)$ [24] showed no significant variation with $\left|F_{o}\right|$ or $\sin \theta / \lambda$. Atomic scattering factors and anomalous dispersion corrections for Pt, Cl, and P atoms were taken from ref. 25. Tables of observed and calculated structure factors are available from the authors on request.
${ }^{31}$ P N.M.R. Spectra were recorded on a Varian HX-IOO in the F.T. mode.

Acknowledgements We thank Dr. D.S. Rycroft of this Department for recording the n.m.r. spectra and the S.R.C. and the University of Glasgow for maintenance awards (to G.K.A. and T.S. respectively).

References

1. C. Crocker and P.L. Goggin, J. Chem. Research, (1978) 1274.
2. C. Eaborn, K.J. Odell, and A. Pidcock, J. Chem. Soc. Dalton, (1978) 1288.
3. G.K. Anderson and R.J. Cross, unpublished results.
4. G.G. Mather, A. Pidcock, and G.J.N. Rapsey, J. Chem. Soc. Dalton, (1973) 2095.
5. T.G. Appleton, H.C. Clark, and L.E. Manzer, Coordin. Chem. Rev., 10 (1973) 335.
6. Lj. Manojloviל-Muir and K.W. Muir, Inorg. Chim. Acta, 10 (1974) 47.
7. R. McWeeny, R. Mason, and A.D.C. Towl, Discuss. Faraday Soc., 47 (1969) 20; R. Mason and A.D.C. Towl, J. Chem. Soc. (A), (1970) 1601.
8. (a) G.K. Anderson and R.J. Cross, J. Chem. Soc. Dalton, in the press; (b) G.K. Anderson and R.J. Cross, J. Chem. Soc. Chem. Comm., (1978) 819.
9. G.K. Anderson, R.J. Cross, and D.S. Rycroft, J. Chem. Research, in the press.
10. R.J. Puddephatt and P.J. Thompson, J. Chem. Soc. Dalton, (1977) 1219.
ll. A.A. Kiffen, C. Masters, and J.P. Visser, J. Chem. Soc. Dalton, (1975) 1311.
11. Lj. Manojlović-Muir, K.W. Muix, and T. Solomun, J. Organometallic Chem., 142 (1977) 265.
12. Ljj. Manojlović-Muir, K.W. Muir, and R. Walker, J. Chem. Soc. Dalton, (1976) 1279.
13. G.W. Bushnell, A. Pidcock, and M.A.R. Smith, J. Chem. Soc. Dalton, (1975) 572.
14. C.D. Cowman, J.C. Thibeault, R.F. Ziolo, and H.B. Gray, J. Amer. Chem. Soc., 98 (1976) 3209.
15. A. de Renzi, B. di Blasio, G. Paiaro, A. Panunzi, and C. Pedone, Gazzeta Chim. Ital。r lo6 (1976) 765.
16. J. Bordner and D.W. Wertz, Inorg. Chem., 13 (1974) 1639.
17. T.G. Hewitt and J.J. de Boer, J. Chem. Soc. (A), (1971) 817.
18. M. Black, R.H.B. Mais, and P.G. Owston, Acta Crystallogr., B25 (1969) 1760.
19. S.F. Watkins, J. Chem. Soc. (A), (1970) 168.
20. W.A. Whitla, H.M. Powell, and L.M. Venanzi, Chem. Commun.r (1966) 310.
21. R.C. Elder, R.D.P. Cruea, and R.F. Morrison, Inorg. Chem., 15 (1976) 1623.
22. R. Mason, M. Textor, N. Al-Saleem, and B.L. Shaw, J. Chem. Soc. Chem. Comm., (1976) 292.
23. Lj. Manojlović-Muir and K.W. Muir, J. Organometallic Chem., in the press.
24. International Tables for Crystallography, Vol. IV, The Kynoch Press, Birmingham, 1974.

[^0]: a positive is downfield from external $\mathrm{H}_{3} \mathrm{PO}_{4}$.

