Journal of Organometallic Chemistry, 170 (1979) 385–397 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

CRYSTAL AND MOLECULAR STRUCTURE, AND ³¹P N,M.R. CHARACTERISTICS OF DI-µ-CHLORODI (PROPIONYL) BIS (DIMETHYLPHENYLPHOSPHINE) -DIPLATINUM (II). TRANS-INFLUENCE OF LIGANDS IN BINUCLEAR COMPLEXES

GORDON K. ANDERSON, RONALD J. CROSS, LJUBICA MANOJLOVIC-MUIR,

KENNETH W. MUIR, and TIHOMIR SOLOMUN

Department of Chemistry, University of Glasgow,

Glasgow G12 800 (Great Britain)

(Received February 5th, 1979)

Summary

The ³¹P n.m.r. spectra of the <u>cis</u> and <u>trans</u> isomers of $[Pt_2(\mu-Cl)_2(COEt)_2 (PMe_2Ph)_2]$ reveal ¹J(Pt-P) coupling constants of <u>ca</u> 5400 Hz. The crystal structure of the <u>trans</u> isomer has been determined by <u>X</u>-ray diffraction methods. The Pt-P and Pt-C bond lengths are 2.209(1) and 1.972(5) Å. The μ -Pt-Cl distances, 2.498(1) Å <u>trans</u> to COEt and 2.393(1) Å <u>trans</u> to PMe_2Ph, suggest that, relative to phosphine, σ -carbon donor ligands exert a greater <u>trans</u>-influence in binuclear complexes than they do in mononuclear platinum(II) derivatives.

Introduction

Unusually large 1 J(Pt-P) coupling constants in halogenbridged binuclear complexes of platinum(II) have recently been reported by several authors [1-3]. In view of the proposed correlation between Pt-P coupling constants and bond lengths [4] we have undertaken an investigation of the ${}^{31}P$ n.m.r. spectrum and solid state structure of $\underline{\text{trans}}$ - $[Pt_2(\mu-Cl)_2(COEt)_2(PMe_2Ph)_2]$, for which ${}^{1}J(Pt-P)$ is exceptionally large, even in relation to other halogen-bridged platinum(II) complexes. The results of this work are also pertinent to any consideration of the <u>cis</u>- and <u>trans</u>influence of ligands in such systems. Up till now the extensive discussion of these topics in platinum chemistry has focussed on mononuclear species [5-7]; the extent to which this discussion is directly applicable to binuclear complexes merits consideration.

Results and Discussion

The title compound was prepared smoothly and in high yield from the reaction between $\underline{\operatorname{cis}}$ -[PtCl₂(CO)(PMe₂Ph)] and Et_2 Hg [8]. The colourless crystals are stable to air and moisture, and dissolve readily in most organic solvents. The ³¹P n.m.r. spectra of the solutions reveal the presence of $\underline{\operatorname{cis}}$ and $\underline{\operatorname{trans}}$ isomers. The ratio of the concentrations of the two isomers is dependent on the solvent, changing from 1:3 in CDCl₃ and CD₂Cl₂ to 1:7 in C_7D_8 . Since the major isomer is favoured by the less polar solvent, we tentatively assign it a $\underline{\operatorname{trans}}$ configuration [1]. Recrystallisation from methylene chloride/ether produces crystals of the $\underline{\operatorname{trans}}$ complex.

There now appears to be considerable evidence that complexes of the type $[Pt_2L_2(\mu-X)_2Y_2]$ (L = tertiary phosphine, X = halogen, and Y = halogen, alkyl, aryl, acyl, or aroyl) exist in solution as mixtures of <u>cis</u> and <u>trans</u> isomers [1,2,8b,9]. In general, <u>trans</u> isomers predominate for the tetrahalide complexes whereas <u>cis</u> isomers are more common when Y = alkyl or aryl. Thus, in the case of the methyl complex $[Pt_2(\mu-Cl)_2Me_2(PMe_2Fh)_2]$ only the <u>cis</u> isomer was observed [10]. Interconversion between the two

TABLE 1

³¹P N.M.R. CHEMICAL SHIFTS (P.P.M) AND COUPLING CONSTANTS (HZ)

.

FOR [Pt₂(μ -Cl)₂(COEt)₂(PMe₂Ph)₂] AT -40°C

SOLVENT	15	s-Isomer			trans-Isom	ler	and the state of t
	δp ^a 1	J (Pt-P)	³ J (Pt-P)	⁴ J (Pt-P)	δP ^{a 1} J(Pt-P)	³ J (Pt-P)	4 _{J (P-P)}
cD ₂ c1 ₂	-12.2	5445	+11		-11.7 5316	2. 1	÷2.9
cDC13	-11.6	5424			-11.5 5310		
c ₇ D ₈	-11.2	5538			-11.6 5403		
a a d a spor bible og før an bir delig sje		to data manandaka - na ay ay ata to an an		3 	ann an		

^a Positive is downfield from external $H_3PO_4^{\circ}$.

isomers occurs readily in solution for most, and possibly for all, of these bridged complexes. Thus, the ratios of <u>cis</u> to <u>trans</u> isomers adjust rapidly in different solvents, and usually only one isomer is obtained on crystallisation. The intermolecular scrambling of mixed compounds of this type is also rapid [3,11]. Moreover, broadening of some of the room-temperature n.m.r. signals of $[Pt_2(\mu-Cl)_2(COEt)_2(PMe_2Ph)_2]$, and also of related compounds [9], suggests that the isomerisation processes are still rapid on the n.m.r. time scale.

³¹P N.M.R. Spectra

Chemical shifts and coupling constants for <u>cis</u>- and <u>trans</u>- $[Pt_2(\mu-Cl)_2(COEt)_2(PMe_2Ph)_2]$ are presented in Table 1. Additionally, the ²J(Pt-Pt) coupling constant at -70°C in CD₂Cl₂ was identified for the more abundant <u>trans</u>-isomer at ±152Hz. The most remarkable features of the spectra are the¹J(Pt-P) coupling constants which are <u>ca</u> 5400 Hz in both the <u>cis</u> and <u>trans</u> isomers. The values show some solvent dependence, but in the same solvent the <u>cis</u> compound displays a coupling 115 - 135 Hz greater than the trans form.

The ¹J(Pt-P) couplings found here are at the upper end of the range typical of halogen-bridged binuclear species containing tertiary organophosphines (<u>ca</u> 3900 - 5500 Hz) [2-3], and are nearly double those found in mononuclear <u>cis</u>-dichloroplatinum(II) -phosphine complexes [e.g. 2754 - 3720 Hz for ¹J(Pt-PEt₃) in <u>cis</u>-[PtCl₂(PEt₃)L] complexes, L = Cl, phosphine, phosphite, and various carbon-donor ligands [12]]. The values do not depend on the halogen bridges only, since those for tetrahalides are considerably lower than the corresponding coupling constants for their dichlorobis(organo)-counterparts. For example, for <u>trans-[Pt₂Cl₄(PMe₂Ph)₂]</u> ¹J(Pt-P)is 3931 Hz [3]. It has been suggested that the high <u>trans</u>-influence of terminal organic groups could cause bridge weakening and thus affect the values of ${}^{1}J(Pt-P)$ [2]. Alternatively, these variations may reflect the differing <u>cis</u>-influence of terminal organo and chloro ligands. This view is consistent with the near equality of the ${}^{1}J(Pt-P)$ coupling constants for <u>cis</u> and <u>trans</u> isomers in Table 1. Moreover, it has been observed that in mononuclear complexes changes in the nature of one of the ligands <u>cis</u> to phosphine may lead to variations in ${}^{1}J(Pt-P)$ of ca 1000 Hz [12].

Crystal and Molecular Structure of trans-[Pt₂(µ-Cl)₂(COEt)₂-(PMe₂Ph)₂]

The crystals are built from discrete binuclear molecules separated by normal van der Waals contacts. Selected bond lengths and angles are presented in Table 2 and a view of the molecule is shown in the Figure.

Figure

A view of the molecular structure showing the atomic numbering scheme. Hydrogen atoms are omitted and the thermal ellipsoids display 50% probability. The small circle represents a crystallographic centre of symmetry.

TABLE 2

SELECTED INTERATOMIC DISTANCES AND ANGLES

Bond Lengths	(Å)		
Pt-Cl	2.498(1)	C(1)-C(2)	1.526(7)
Pt-Cl	2.393(1)	C(2)-C(3)	1.501(10)
Pt-P	2.209(1)	C(6)-C(7)	1.389(8)
Pt-C(1)	1.972(5)	C(6)-C(11)	1.375(8)
P-C(4)	1.799(6)	C(7)-C(8)	1.398(10)
P-C(5)	1.800(6)	C(8)-C(9)	1.351(12)
P-C(6)	1.818(5)	C(9)-C(10)	1.379(11)
0-C(l)	1.208(7)	C(10)-C(11)	1.383(8)
Bond angles	<u>(°</u>)		
Cl-Pt-Cl	83.7(1)	Pt-C(1)-0	123.2(4)
Cl-Pt-P	97.4(1)	Pt-C(1)-C(2)	115.3(4)
Cl-Pt-C(1)	174.9(1)	0-C(1)-C(2)	121.3(5)
Cl -Pt-P	178.8(1)	C(1)-C(2)-C(3)	113.8(5)
C1 -Pt-C(1)	91.2(1)	P-C(6)-C(<u>7</u>)	116.7(4)
P-Pt-C(1)	87.6(1)	P-C(6)-C(11)	123.1(4)
Pt-Cl-Pt	96.3(1)	C(7)-C(6)-C(11)	120.2(5)
Pt-P-C(4)	113.6(2)	C(6)-C(7)-C(8)	118.0(6)
Pt-P-C(5)	113.9(3)	C(7)-C(8)-C(9)	122.7(7)
Pt-P-C(6)	112.3(2)	C(8)-C(9)-C(10)	118.1(6)
C(4)-P-C(5)	104.3(3)	C(9)-C(10)-C(11)	121.4(7)
C(4)-P-C(6)	106.9(3)	C (10)-C(11)-C(6)	119.6(6)
C(5)-P-C(6)	105.0(3)		

Each molecule is constrained to exact \underline{C}_i symmetry. This implies that the Pt₂Cl₂ bridging unit is exactly planar. Each metal atom has a slightly distorted square-planar coordination, with the two planes sharing a common edge so that the two platinum and six ligand-donor atoms all lie within 0.013Å of their common plane. Bond lengths and angles within the PMe_Ph ligand are unexceptional. The conformation adopted by this ligand is such that methyl carbon C(5) lies close to the metal co-ordination plane, and the phenyl ring plane passes near C(4), as shown by respective CI-Pt-P-C(5) and C(4)-P-C(6)-C(6)C(11) torsion angles of -9.6(3) and 5.2(5)°. Bond lengths and valency angles within the propionyl ligand are also normal. The P-Pt-C(1)-O and Pt-C(1)-C(2)-C(3) torsion angles are 72.7(4) and 161.1(5)°. This conformation leads to a somewhat short intramolecular Pt...H contact, involving a hydrogen atom attached to C(2), of 2.8 Å.

The metal-ligand bond lengths display two points of First, despite the large ¹J(Pt-P) coupling constant, interest. the Pt-P distance $[2.209(1)^{\circ}]$ is only slightly shorter than the run of comparable Pt-P(\underline{trans} to Cl) bond lengths [2.21 - 2.28Å] in mononuclear complexes containing alkyl- or aryl- substituted tertiary phosphines [12,13]. Indeed, it is equal, to within experimental error, to the shortest such value: 2.215(4)A in the anion [PtCl₃(PEt₃)] . However, this anion displays a ¹J(Pt-PEt₂) coupling constant of 3704Hz [14], some 30% smaller than that for trans-[Pt2(u-Cl)2(COEt)2(PMe2Ph)2]. These results suggest that the proposed correlation between Pt-P coupling constants and bond lengths [4] breaks down if the complexes compared differ too greatly. Second, the Pt-(u-Cl) distances [2.393(2) and 2.498(1)Å] differ substantially and are consistent with σ-propionyl exerting a much greater trans-influence than phosphine on the bridge bonds. This result is surprising, since

BOND LENGTHS (Å) in	trans-	·[Pt ₂ x	2 (1-C1) 2 ^Y 2]	COMPLEX	S ·			
СОМРЪЕХ	×	Y	Pt-X	Pt-Y (<u>tr</u>	Pt-Cl ans to X)	Pt-Cl (trans to)	Ref.	
[Pt ₂ C1 ₆] ²⁻	13	5	2。265	2.279	2 . 318	2°330	15	
	C1	C1	2。280	2°268	2.337	2 ° 327		
$Pt_{2}cl_{4} \{CH_{2}C(0Me)_{2}\}_{2}$	d L C	CI	2.09(3)	2°264 (8)	ı	2. 324 (7)	16	
$Pt_{2}Cl_{4}(C_{5}H_{8})_{2}$	π~C=C	C	2.20(2)	2.264 (6)	2 . 349(5)	2 。 320(5)	17	
$Pt_{2}C1_{4}(C_{7}H_{12})_{2}$	11−C=C	CI	2°12(2)	2 。 257 (6)	2,362(6)	2 . 328(6)	. 17	
$Pt_{2}c1_{4}(C_{7}H_{12})_{2}$	7=C=C	Cl	2 .07-2. 25(2)	2.273(5)	2.382(5)	2 . 342(5)	18	
$Pt_2Cl_4(PPr_3)_2$	PPr ⁿ 3	CI	2.230(9)	2.279(9)	2。425(8)	2 . 315(8)	19	
$Pt_2Cl_4(AsMe_3)_2$	AsMe ₃	CT .	2.308(2)	2 . 268(6)	2.394(6)	2,312(5)	20	
Pt ₂ c1 ₂ (c ₁₁ H ₁₅ 0) ₂	a-c	π-C≡C	2.07 2	: . 11-2 . 23	2 . 51	2°34	21	
$Pt_2c1_2(c_{12}H_9N_2)_2$	α <u>-</u> C	z	1。94(2)	1.98(2)	2。460(5)	2,326(6)	22	
$\operatorname{Pt}_2 \operatorname{Cl}_2 (\operatorname{Bu}_2^{\operatorname{F}} \operatorname{PCH}_2 \operatorname{CMe}_2 \operatorname{CH}_2)_2$	0-0	Bu ^t P-	2.06	2,200	2.460	2 °402	23	
$Pt_2 C1_2 (COEt)_2 (PMe_2^{Ph})_2$	0-C	PMe ₂ PI	1.972(5)	2.209(1)	2.498(1)	2°393(1)	Present work	

.

392 .

.

TABLE 3

Pt-Cl distances in mononuclear complexes, 2.36 - 2.39Å trans to tertiary phosphine and 2.40 - 2.42Å trans to σ -carbon donors [6], suggest that the trans-influence of phosphines is only slightly less than that of σ -carbon donor ligands.

The generality of these conclusions is confirmed by a survey of bond lengths in trans-[$Pt_2X_2(\mu-Cl)_2Y_2$] molecules (Table 3) [15-23]. In these molecules each bridging chlorine atom participates in two Pt-Cl bonds which are trans to different terminal ligands. The data in Table 3 do not indicate any significant relationship between the lengths of the two Pt-(µ-Cl) bonds formed by a given chlorine atom. Instead, each Pt-(μ -Cl) distance appears to reflect the influence of the transterminal ligand, according to the series $Cl<\pi-C=C<AsMe_3\leq PR_3<\sigma-C$. Apart from the previously noted disparity between the relative magnitude of the trans-influence of PR, and o-C, this series is identical with that derived from mononuclear complexes [5-7]. The terminal platinum-ligand bonds in Table 3, including those to tertiary phosphine, are on average ca 0.03Å shorter than corresponding bonds trans to chlorine in mononuclear complexes, while the Pt-(μ -Cl) bonds are typically ca 0.03Å longer than Pt-Cl bonds in mononuclear complexes trans to similar ligands. These features seem compatible with current views of trans-influence [5-7].

Experimental

The experimental and computational procedures used in the analysis were all of standard type and have already been described in detail [24].

TABLE 4

(a) FRACTIONAL COORDINATES (x10⁴)

Atom	<u>×</u>	Σ	z
Pt	544.5(2)	-1607.2(2)	1349.2(1)
Cl	1561(2)	800 (2)	-1(1)
P	2468(2)	-2397(2)	2613(1)
0	-1465(7)	-3321(6)	3303 (4)
C(1)	-431(7)	-3446(6)	2330(4)
C(2)	73(10)	-4998 (8)	1735(6)
C(3)	-103(14)	-6608(9)	2598(8)
C(4)	1231(10)	-1829(8)	4060(5)
C(5)	4232(10)	-1395(9)	2131 (7)
C(6)	3846(7)	-4749(6)	2852(5)
C(7)	4995 (10)	-5464(9)	1847(6)
C(8)	6027(10)	-7277(10)	1999(8)
C (9)	5946(11)	-8345(8)	3074 (8)
C(10)	4777(11)	-7604 (8)	4055(7)
C(11)	3738 (9)	-5815(7)	3953(5)

<u>Measurements</u> The unit cell dimensions and the integrated intensities of all independent reflexions with $\theta(MO-\underline{K}_{\alpha}) \leq 30^{\circ}$ were measured on an Enraf-Nonius CAD-4F diffractometer. The analysis was carried out with 3194 structure amplitudes which had been corrected for Lorentz, polarisation, and absorption effects. Transmission factors (on F²) were 0.17 - 0.60.

394

		<u>U</u> 22	<u>U</u> 33	<u><u>u</u>15</u>	<u><u></u><u></u> <u></u> <u></u> <u></u></u>	<u>U</u> 23
Pt	35.0(1)	36.2(1)	32.0(1)	-10.5(1)	-4.0(1)	-2.1(1)
Cl	55.0(6)	57.6(7)	46.4(6)	-29.8(6)	-18.8(5)	10.4(5)
Р	42.4(6)	39.9(5)	39.5(6)	~10.7(5)	-9.7(5)	-4.8(5)
0	76(3)	78(3)	46(2)	-41(2)	8(2)	-10(2)
c(1)	44 (2)	47(2)	40(2)	-17(2)	-8(2)	1(2)
C(2)	81(4)	58(3)	52 (3)	-34(3)	-8(3)	-9(2)
C(3)	135(7)	60 (4)	95(6)	-49(4)	-35(5)	2(4)
C(4)	75(4)	63(3)	45(3)	-13(3)	-9(3)	-22(2)
C(5)	67(4)	66(4)	91(5)	-35(3)	-32(3)	4(3)
C(6)	45(2)	38(2)	45(2)	-6(2)	-13(2)	-5(2)
C(7)	67(4)	66(4)	55(3)	0(3)	-8(3)	-15(3)
C(8)	69(4)	72(4)	96(6)	11(3)	-9(4)	-44(4)
C(9)	71(4)	42(3)	107(6)	-3(3)	-30(4)	-15(3)
C (10)	84(4)	46(3)	89(5)	-23(3)	-30(4)	11(3)
C(ll)	65(3)	49(3)	54(3)	-18(2)	-9(3)	-2(2)

(b) ANISOTROPIC TEMPERATURE FACTORS

^a The form used was $\exp(-2\pi^2 \times 10^{-3} \stackrel{3}{\underset{i=1}{\overset{5}{\sum}} \stackrel{3}{\underset{j=1}{\overset{1}{\sum}} \stackrel{3}{\underset{j=1}{\overset{1}{\sum}} \stackrel{1}{\underset{j=1}{\overset{1}{\sum}} \stackrel{1}{\underset{j=1}{\underset{j=1}{\atopj=1}{\atopj=1}} \stackrel{1}{\underset{j=1}{\atopj=1}{\atopj=1}} \stackrel{1}{\underset{j=1}{\atopj=1}{\atopj=1}} \stackrel{1}{\underset{j=1}{\atopj=1}} \stackrel{1}{\underset{j=1}{\atopj=1}} \stackrel{1}{\underset{j=1}{\atopj=1}{\atopj=1}} \stackrel{1}{\underset{j=1}{\atopj=1}} \stackrel{1}{\underset{j=1}{$

Structure Analysis. The positions of all atoms, including hydrogen,were determined by Patterson and difference Fourier methods. Full-matrix least squares adjustment of 136 scale, positional, and thermal parameters (Table 4) converged with $\underline{R} = 0.026$ and $\underline{R}_{w} \approx 0.033$. Hydrogen atoms were included in these calculations but their parameters were not refined. A final difference synthesis displayed regions of $\pm 1.6e^{\Lambda^{-3}}$ close to the platinum atom; elsewhere function values were within $\pm 0.8e^{\Lambda^{-3}}$. Mean values of $\underline{w}\Delta^2$ ($w=\sigma^{-2}(F_0)$, q=0.04) [24] showed no significant variation with $|F_0|$ or sin θ/λ . Atomic scattering factors and anomalous dispersion corrections for Pt,Cl, and P atoms were taken from ref. 25. Tables of observed and calculated structure factors are available from the authors on request.

 $\frac{31}{P \text{ N.M.R. Spectra}}$ were recorded on a Varian HX-100 in the F.T. mode.

<u>Acknowledgements</u> We thank Dr. D.S. Rycroft of this Department for recording the n.m.r. spectra and the S.R.C. and the University of Glasgow for maintenance awards (to G.K.A. and T.S. respectively).

References

- 1. C. Crocker and P.L. Goggin, J. Chem. Research, (1978) 1274.
- C. Eaborn, K.J. Odell, and A. Pidcock, J. Chem. Soc. Dalton, (1978) 1288.
- 3. G.K. Anderson and R.J. Cross, unpublished results.
- G.G. Mather, A. Pidcock, and G.J.N. Rapsey, J. Chem. Soc. Dalton, (1973) 2095.
- T.G. Appleton, H.C. Clark, and L.E. Manzer, Coordin. Chem. Rev., 10 (1973) 335.
- Lj. Manojlović-Muir and K.W. Muir, Inorg. Chim. Acta, 10 (1974) 47.
- R. McWeeny, R. Mason, and A.D.C. Towl, Discuss. Faraday Soc.,
 47 (1969) 20; R. Mason and A.D.C. Towl, J. Chem. Soc. (A),
 (1970) 1601.
- (a) G.K. Anderson and R.J. Cross, J. Chem. Soc. Dalton, in the press; (b) G.K. Anderson and R.J. Cross, J. Chem. Soc. Chem. Comm., (1978) 819.

- 9. G.K. Anderson, R.J. Cross, and D.S. Rycroft, J. Chem. Research, in the press.
- R.J. Puddephatt and P.J. Thompson, J. Chem. Soc. Dalton, (1977) 1219.
- 11. A.A. Kiffen, C. Masters, and J.P. Visser, J. Chem. Soc. Dalton, (1975) 1311.
- Lj. Manojlović-Muir, K.W. Muir, and T. Solomun, J. Organometallic Chem., 142 (1977) 265.
- Lj. Manojlović-Muir, K.W. Muir, and R. Walker, J. Chem. Soc. Dalton, (1976) 1279.
- G.W. Bushnell, A. Pidcock, and M.A.R. Smith, J. Chem. Soc. Dalton, (1975) 572.
- C.D. Cowman, J.C. Thibeault, R.F. Ziolo, and H.B. Gray,
 J. Amer. Chem. Soc., 98 (1976) 3209.
- A. de Renzi, B. di Blasio, G. Paiaro, A. Panunzi, and
 C. Pedone, Gazzeta Chim. Ital., 106 (1976) 765.
- 17. J. Bordner and D.W. Wertz, Inorg. Chem., 13 (1974) 1639.
- 18. T.G. Hewitt and J.J. de Boer, J. Chem. Soc. (A), (1971) 817.
- 19. M. Black, R.H.B. Mais, and P.G. Owston, Acta Crystallogr., B25 (1969) 1760.
- 20. S.F. Watkins, J. Chem. Soc. (A), (1970) 168.
- W.A. Whitla, H.M. Powell, and L.M. Venanzi, Chem. Commun., (1966) 310.
- R.C. Elder, R.D.P. Cruea, and R.F. Morrison, Inorg. Chem., 15 (1976) 1623.
- R. Mason, M. Textor, N. Al-Saleem, and B.L. Shaw, J. Chem. Soc. Chem. Comm., (1976) 292.
- Lj. Manojlović-Muir and K.W. Muir, J. Organometallic Chem., in the press.
- International Tables for Crystallography, Vol. IV, The Kynoch Press, Birmingham, 1974.